ÖÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´% VLA Proudly Presents %ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ·
º º
ÓÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ½
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Three Dimensional Shading In Computer Graphics
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
By Lithium /VLA
Hopefully you have read the companion document 3DROTATE.DOC, as this one
will build apon the concepts presented in my attempt to teach some of the
math need to make 3D graphics a reality. This file will cover such important
topics as the Dot Product and how routines are best constructed for real-time
3D rotations and planar shading.
Our Friend, The Dot Product
The Dot Product is a neat relation that will allow you to quickly find
the angle between any two vectors. It's easiest to explain graphicly, so
I will exercise my extended-ASCII keys.
Two Vectors A & B
A (Xa, Ya, Za) ³A³ = û( (Xa)ý + (Ya)ý + (Za)ý )
B (Xb, Yb, Zb) ³B³ = û( (Xb)ý + (Yb)ý + (Zb)ý )
Where Xa, and the others coorispond to some value on their respective Axis's
¿A
/
/
/
/
\ é <-- Angle Theta between vector A and B
\
\
\
ÙB
Cos(é) = Xa * Xb + Ya * Yb + Za * Zb
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
³A³*³B³
Example:
A (1,2,3) ³A³ = û( 1ý + 2ý + 3ý) = û(14) = 3.7417
B (4,5,6) ³b³ = û( 4ý + 5ý + 6ý) = û(77) = 8.7750
Cos(é) = 1 * 4 + 2 * 5 + 3 * 6 = 4 + 10 + 18 = 32 = 0.9746
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄ
(3.7417)*(8.7750) 32.8334 32.8334
ArcCos (.9746) = 12.9ø
So, your wondering how this revolutionizes you code, huh? Well, remember
our other friend, the Normal vector? You use Normal vectors that define
the directions of everything in our 3D world. Let's say that vector A was
the Normal vector from my plane, and B is a vector that shows the direction
that the light in my scene is pointing. If I do the Dot Product of them,
you will get the angle between them, if that angle is >= 90ø and <= 270ø
then no light falls on the visible surface and it doesn't need to be
displayed.
Also notice, the way the values of the Cosine orient themselves
90ø Cos 000ø = 1
Cos 090ø = 0
³ Cos 180ø = -1
Negative ³ Positive Cos 270ø = 0
³
³
180ø ÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ 0ø An angle between a light and a plane that
³ is less than 90ø or greater than 270ø will
³ be visible, so you can check if the Cos(é)
Negative ³ Positive is greater than 0 to see if it is visible.
³
³
270ø
How Do You Implement The Code? Easy As ã.
Examples in ASM structures
We will define our points like this
STRUC XYZs
Xpos dd ?
Ypos dd ?
Zpos dd ?
Dist dd ?
ENDS XYZs ;size is 16 bytes
The X,Y,Zpos define a point in 3D space, Dist is the distance from the origin
Dist = û( Xý + Yý + Zý )
Precalculate these values and have them handy in your data area
Our planes should look something like this
STRUC PlaneSt
NumPts db ? ;3 or 4
NormIndex dw ?
PtsIndex dw ?
dw ?
dw ?
dw ?
ENDS PlaneSt
The number of points that in the plane depends on the number your fill
routines can handle you must have at least 3 and more than 6 is not suggested
Then we set up our data like this
MaxPoints = 100
MaxPlanes = 100
PointList XYZs MaxPoints DUP()
PlaneList PlaneSt MaxPlanes DUP()
NormalList XYZs <0,0,0, 10000h> , MaxPlanes DUP()
Non-ASM User Note:
I set up points in a structure that had an X,Y,Z and Distance
value. I set up a plane structure that had the number of points
the index number of the normal vector for that plane and the index
numbers for the points in the plane.
The next lines set up arrays of these points in PointList, and
the number of points was defined as MaxPoints. An array of planes
was created as PlaneList with MaxPlanes as the total number of
plane structures in the array. NormalList is an array of the vectors
that are normal to the planes, one is set up initally (I'll explain
that next) and then one for each possible plane is allocated.
You'll notice that I defined the first Normal and then created space for
the rest of the possible normals. I'll call this first normal, the
Zero Normal. It will have special properties for planes that don't shade
and are never hidden.
Well, before I start telling all the tricks to the writting code, let me
make sure a couple of points are clear.
- In the 3DROTATE.DOC I said that you could set your view point on the
Z-Axis and then figure out if planes were visible by the post-rotation
Normal vectors, if their Z was > 0 then display, if not, don't
That is an easy way to set up the data, and I didn't feel like going
into the Dot Product at the time, so I generalized. So, what if you
don't view your plane from the Z-Axis, the answer is you use the...
Dot Product!
that's right. The angle will be used now to figure wheither or not to
display the plane.
- I have been mentioning lights and view points as vectors that I can
use with the Normal vector from my plane. To work correctly, these
vectors for the lights and view should point in the direction that you
are looking or the direction that the light is pointing, *NOT* a vector
drawn from the origin to the viewer position or light position.
- True Normal vectors only state a direction, and should therefore have
a unit distance of 1. This will have the advantage of simplifying the
math involved to figure you values. Also, for God's sake, pre-compute
your normal, don't do this everytime. Just rotate them when you do your
points and that will update their direction.
If the Normal's have a length of 1 then ³A³*³B³ = 1 * 1 = 1
So:
Cos(é) = Xa * Xb + Ya * Yb + Za * Zb
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
³A³*³B³
Is Reduced To:
Cos(é) = Xa * Xb + Ya * Yb + Za * Zb
We eliminated a multiply and a divide! Pat yourself on the back.
- You ASM users might be wondering why I defined my Zero Normal as:
<0,0,0,10000h> How does 10000h = a length of 1 ?
Well, this is a trick you can do in ASM, instead of using floating point
values that will be slow on computers without math co-processors, we can
use a double word to hold our value. The high word holds the integer
value, and the low word is our decimal. You do all of your computations
with the whole register, but only pull the high word when you go to
display the point. So, with that under consideration, 10000h = 1.00000
Not bad for integers.
- How does the Zero Normal work? Since the X,Y,and Z are all 0, the
Cos(é) = 0, so if you always display when Cos(é) = 0, then that plane
will always be seen.
So, Beyond The Babble... How To Set Up Your Code
Define Data Points, Normals, and Planes
Pre-Calculate as many values as possible
Rotate Points and Normals
Determin Visible Planes With Dot Product
(Save this value if you want to shade)
Sort Visible Planes Back to Front
(Determin Shade From Dot Product)
Clip Plane to fit scene
Draw to the screen
Change Angles
Goto Rotation
A quick way to figure out which color to shade your plane if you are
using the double word values like I described before is to take the
Dot Product result, it will lie between 10000h - 0h if you would like
say 16 shades over the angles, then take that value and shr ,12 that will
give you a value from 0h - 10h (0-16, or 17 colors) if you make 10h into
0fh, add that offset to a gradient in your palette, then you will have
the color to fill your polygon with.
Note also that the Cosine function is weighted toward the extremes.
If you want a smooth palette change as the angles change, your palette
should weight the gradient accordingly.
A useful little relation for depth sorting is to be able to find the
center of a triangle.
E The center C = (D + E + F)/3
^
/ \ Divide each cooridinate by (Xd + Xe + Xf)/3 = Xc
/ C \ and do the same for the Y's and Z's if you
/ \ choose to sort with this method. Then rotate
DÄÄÄÄÄÄÄÄÄF that point and use it to depth sort the planes
Phong and Goraud Shading
Recently, someone asked me about the practiblity of real-time phong and
goraud shading. The technique is common to ray-tracers and requires a great
deal of calculation when working with individual rays cast from each pixel,
but when only using this for each plane, it is possible. This type of shading
involves taking into account the reduced luminousity of light as distance
increases. For each light, you define a falloff value. This value should be
the distance a which the light will be at full intensity. Then at 2*FallOff
you will have 1/2 intensity, 3*FallOff will yeild 1/3 and so on. To implement
this type of shading, you will need to determin the distance from the light
to the center of the plane. If distance < FallOff, then use the normal
intensity. If it is greater, divide the FallOff value by the distance. This
will give you a scalar value that you can multiple by the shading color that
the plane should have. Use that offset and it will be darker since it is
further away from the light source.
However, to determin the distance form the light to each plane, you must
use a Square Root function, these are inherently slow unless you don't care
about accuracy. Also, it would be difficult to notice the use of this
technique unless you have a relatively small FallOff value and your objects
move about in the low intesity boundries.
Well, that's all that I feel like doing tonight, and besides, Star Trek is on!
So, see VLA.NFO for information about contacting myself or any of the other
members of VLA.
Happy Coding!