#34 -<\>--<\>--<\>--<\>--<\> Improvised Explosives Gelatine Explosive from Anti-Freeze -<\>--<\>--<\>--<\>--<\> Written by: The Lich This explosive is almost the same as the nitro-gelatin plastique explosive exept that it is supple and pliable to -10 to -20 deg. C.. Antifreeze is easier to obtain than glycerine and is usually cheaper. It needs to be freed of water before the manufacture and this can be done by treating it with calcium chlor- ide until a specific gravity of 1.12 @ o deg. C. or 1.11 @ 20 deg. C. is obtained. This can be done by adding calcium chloride to the antifreeze and checking with a hydrometer and continue to add calcium chloride until the proper reading is obtained. The antifreeze is then filtered to remove the calcium chloride from the liquid. This explosive is superior to nitro-gelatin in that it is easier to collidon the IMR smokeless powder into the explosive and that the 50/50 ether ethyl alcohol can be done away with. It is superior in that the formation of the collidon is done very rapidly by the nitroethelene glycol. It's detonation properties are practically the same as the nitro- gelatine. Like the nitro-gelatine it is highly flammable and if caught on fire the chances are good that the flame will progress to detonation. In this explosive as in nitro-gelatine the addition of 1% sodium carbonate is a good idea to reduce the chance of recidual acid being present in the final explos- ive. The following is a slightly different formula than nitro-gelatine: Nitro-glycol 75% Guncotton (IMR) 6% Potassium Nitrate 14% Flour (baking) 5% In this process the 50/50 step is omitted. Mix the potassium nitrate with the nitro-glycol. Remember that this nitro-glycol is just as sensitive to shock as is nitroglycerin. The next step is to mix in the flour and sodium carbonate. Mix these by kneading with gloved hands until the mixture is uniform. This kneading should be done gently and slowly. The mixture should be uniform when the IMR smokeless powder is added. Again this is kneaded to uniformity. Use this explosive as soon as possible. If it must be stored, store in a cool, dry place (0-10 deg. C.). This explosive should detonate at 7600-7800 m/sec.. These two explosives are very powerful and should be sensitive to a #6 blasting cap or equivelent. These explosives are dangerous and should not be made unless the manufacturer has had experience with this type compound. The foolish and ignor- ant may as well forget these explosives as they won't live to get to use them. Don't get me wrong, these explosives have been manufactured for years with an amazing record of safety. Millions of tons of nitroglycerine have been made and used to manufacture dynamite and explosives of this nature with very few mis- haps. Nitroglycerin and nitroglycol will kill and their main victims are the stupid and foolhardy. Before manufacturing these explosives take a drop of nitroglycerin and soak into a small piece of filter paper and place it on an anvil. Hit this drop with a hammer and don't put any more on the anvil. See what I mean! This explosive compound is not to be taken lightly. If there are any doubts DON'T. -<\>--<\>--<\>--<\>--<\> Improvised Explosives Plastique Explosive from Aspirin -<\>--<\>--<\>--<\>--<\> Written by: The Lich This explosive is a phenol dirivative. It is toxic and explosive compounds made from picric acid are poisonous if inhaled, ingested, or handled and absor- bed through the skin. The toxicity of this explosive restrict's its use due to the fact that over exposure in most cases causes liver and kidney failure and sometimes death if immediate treatment is not obtained. This explosive is a cousin to T.N.T. but is more powerful than it's cousin. It is the first explosive used militarily and was adopted in 1888 as an artillery shell filler. Originally this explosive was derived from coal tar but thanx to modern chemistry you can make this explosive easily in approximately three hours from acetylsalicylic acid (aspirin purified). This procedure involves dissolving the acetylsalicylic acid in warm sulfuric acid and adding sodium or potassium nitrate which nitrates the purified aspirin and the whole mixture drowned in water and filtered to obtain the final pro- duct. This explosive is called trinitrophenol. Care should be taken to ensure that this explosive is stored in glass containers. Picric acid will form dang- erous salts when allowed to contact all metals exept tin and aluminum. These salts are primary explosive and are super sensitive. They also will cause the detonation of the picric acid. To make picric acid obtain some aspirin. The cheaper brands work best but buffered brands should be avoided. Powder these tablets to a fine consistancy. To extract the acetylsalicylic acid from this powder place this powder in methyl alcohol and stir vigorously. Not all of the powder will dissolve. Filter this powder out of the alcohol. Again wash this powder that was filtered out of the alcohol with more alcohol but with a lesser amount than the first extrac- tion. Again filter the remaining powder out of the alcohol. Combine the now clear alcohol and allow it to evaporate in a pyrex dish. When the alcohol has evaporated there will be a surprising amount of crystals in the bottom of the pyrex dish. Take fourty grams of these purified acetylsalicylic acid crystals and dissolve them in 150 ml. of sulfuric acid (98%, specify gravity 1.8) and heat to diss- olve all the crystals. This heating can be done in a common electric frying pan with the thermostat set on 150 deg. F. and filled with a good cooking oil. When all the crystals have dissolved in the sulfuric acid take the beaker, that you've done all this dissolving in (600 ml.), out of the oil bath. This next step will need to be done with a very good ventilation system (it is a good idea to do any chemistry work such as the whole procedure and any procedure on this disk with good ventilation or outside). Slowly start adding 58 g. of sodium nitrate or 77 g. of potassium nitrate to te acid mixture in the beaker very slowly in small portions with vigorous stirring. A red gas (nitrogen tri- oxide) will be formed and this should be avoided. The mixture is likely to foam up and the addition should be stopped until the foaming goes down to prevent the overflow of the acid mixture in the beaker. When the sodium or potassium nitrate has been added the mixture is allowed to cool somewhat (30- 40 deg. C.). The solution should then be dumped slowly into twice it's volume of crushed ice and water. The brilliant yellow crystals will form in the water. These should be filtered out and placed in 200 ml. of boiling distilled water. This water is allowed to cool and then the crystals are then filtered out of the water. These crystals are a very, very pure trinitrophenol. These crystals are then placed in a pyrex dish and places in an oil bath and heated to 80 deg. C. and held there for 2 hours. This temperature is best maintained and checked with a thermometer. The crystals are then powdered in small quantities to a face powder consistency. These powdered crystals are then mixed with 10% by weight wax and 5% vaseline which are heated to melting temperature and poured into the crystals. The mixing is best done by kneading together with gloved hands. This explosive should have a useful plsticity range of 0-40 deg. C.. The detonation velocity should be around 7000 m/sec.. It is toxic to handle but simply made from common ingredients and is suitable for most demolition work requiring a moderately high detonation velocity. It is very suitable for shaped charges and some steel cutting charges. It is not as good an explosive as C-4 or other R.D.X. based explosives but it is much easier to make. Again this explosive is very toxic and should be treated with great care. AVOID HANDLING BARE-HANDED, BREATHING DUST AND FUMES, AVOID ANY CHANCE OF INGESTION. AFTER UTENSILS ARE USED FOR THE MANUFACTURE OF THIS EXPLOSIVE RETIRE THEM FROM THE KITCHEN AS THE CHANCE OF POISONING IS NOT WORTH THE RISK. THIS EXPLOSIVE, IF MANUFACTURED AS ABOVE, AHOULD BE SAFE IN STORAGE BUT WITH ANY HOMEMADE EXPLOSIVE STORAGE OS NOT RECOMENDED AND EXPLOSIVES SHOULD BE MADE UP AS NEEDED. A V O I D C O N T A C T W I T H A L L M E T A L S E X E P T T I N -<\>--<\>--<\>--<\>--<\> Improvised Explosives Plastique Explosive from Bleach -<\>--<\>--<\>--<\>--<\> Written by: The Lich This explosive is a potassium chlorate explosive. This explosive and explo- sives of similar composition were used in World War II as the main explosive filler in gernades, land mines, and mortar used by French, German, and other forces involoved in that conflict. These explosives are relatively safe to manufacture. One should strive to make sure these explosives are free of sulfur, sulfides, and picric acid. The presence of these compounds result in mixtures that are or can become highly sensitive and possibly decompose ex- plosively while in storage. The manufacture of this explosive from bleach is given as just an expediant method. This method of manufacturing potassium chlorate is not economical due to the amount of energy used to boil the sol- ution and cause the 'dissociation' reaction to take place. This procedure does work and yields a relatively pure and a sulfur/sulfide free product. These explosives are very cap sensitive and require only a #3 cap for instigating detonation. To manufacture potassium chlorate from bleach (5.25% sodium hypochlorite solution) obtain a heat source (hot plate stove etc.) a battery hydrometer, a large pyrex or enameled steel container (to weigh chemicals), and some potassium chloride (sold as salt substitute). Take one gallon of bleach, place it in the container and begin heating it. While this solution heats, weigh out 63 g. potassium chloride and add this to the bleach being heated. Bring this solution to a boil and boiled until when checked by a hydrometer the reading is 1.3 (if a battery hydrometer is used it should read full charge). When the reading is 1.3 take the solution and let it cool in the refrigerator until it's between room temperature and 0 deg. C.. Filter out the crystals that have formed and save them. Boil the solution again until it reads 1.3 on the hydrometer and again cool the solution. Filter out the crystals that have formed and save them. Boil this solution again and cool as before. Filter and save the crystals. Take these crystals that have been saved and mix them with distilled water in the following proportions: 56 g. per 100 ml. distilled water. Heat this solution until it boils and allow it to cool. Filter the solution and save the crystals that form upon cooling. The process if purifi- cation is called fractional crystalization. These crystals should be relatively pure potassium chlorate. Powder these to the consistency of face powder (400 mesh) and heat gently to drive off all moisture. Melt five parts vasoline and five parts wax. Dissolve this in white gasoline (camp stove gasoline) and pour this liquid on 90 parts potassium chlorate (the crystals from the above operation) in a plastic bowl. Knead this liquid into the potassium chlorate until immediately mixed. Allow all the gasoline to evaporate. Place this explosive in a cool, dry place. Avoid friction, sulfur, sulfide, and phosphorous compounds. This explosive is best molded to the desired shape and density (1.3g./cc.) and dipped in wax to water proof. These block type charges guarantee the highest detonation velocity. This explosive is really not suited to use in shaped charge applications due to its relatively low detonation velocity. It is comparable to 40% ammonia dynamite and can be considered the same for the sake of charge computation. If the potassium chlorate is bought and not made it is put into the manufacture pro- cess in the powdering stages preceding the addition of the wax/vaseline mix- ture. This explosive is bristant and powerful. The addition of 2-3% aluminum powder increases its blast effect. Detonation velocity is 3300 m/sec.. -<\>--<\>--<\>--<\>--<\> Improvised Explosives Plastique Explosives From Swimming Pool Clorinating Compound -<\>--<\>--<\>--<\>--<\> Written by: The Lich This explosive is a chlorate explosive from bleach. This method of production of potassium or sodium chlorate is easier and yields a more pure product than does the plastique explosive from bleach process. In this reaction the H.T.H. (calcium hypochlorite CaC10) is mixed with water and heated with either sodium chloride (table salt, rock salt) or potassium chloride (salt substitute). The latter of these salts is the salt of choice due to the easy crystalization of the potassium chlorate. This mixture will need to be boiled to ensure complete reaction of the ingredients. Obtain some H.T.H. swimming pool chlorination compound or equivilant (usually 65% calcium hypochlorite). As with the bleach process mentioned earlier the reaction described below is also a dissociation reaction. In a large pyrex glass or enamled steel container place 1200g. H.T.H. and 220g. potassium chloride or 159g. sodium chloride. Add enough boiling water to dissolve the powder and boil this solution. A chalky substance (calcium chloride) will be formed. When the formation of this chalky substance is no longer formed the solution is filtered while boiling hot. If potassium chloride was used potassium chlorate will be formed. This potassium chlorate will drop out or crystalize as the clear liquid left after filtering cools. These crystals are filtered out when the solution reaches room temperature. If the sodium chloride salt was used this clear filtrate (clear liquid after filter- ation) will need to have all water evaporated. This will leave crystals which should be saved. These crystals should be heated in a slightly warm oven in a pyrex dish to drive off all traces of water (40-75 deg. C.). These crystals are ground to a very fine powder (400 mesh). If the sodium chloride salt is used in the initial step the crystalization is much more time consuming. The potassium chloride is the salt to use as the resulting product will crystalize out of the solution as it cools. The powdered and completely dry chlorate crystals are kneaded together with vaseline in a plastic bowl. ALL CHLORATE BASED EXPLOSIVES ARE SENSITIVE TO FRICTION AND SHOCK AND THESE SHOULD BE AVOIDED. If sodium chloride is used in this explosive it will have a tendancy to cake and has a slightly lower detonation velocity. This explosive is composed of the following: potassium/sodium chlorate 90% vaseline 10% The detonation velocity can be raised to a slight extent by the addition of 2-3% aluminum sunstituted for 2-3% of the vaseline. This addition of this aluminum will give the explosive a bright flash if set off at night which will ruin night vision for a short while. The detonation velocity of this explosive is approximately 3200 m/sec. for the potassium salt and 2900 m/sec. for the sodium salt based explosive.